Source code for tensortrade.feed.api.float.window.ewm

"""
ewm.py contains functions and classes for exponential weighted moving stream
operations.
"""

from typing import List, Tuple

import numpy as np

from tensortrade.feed.core.base import Stream
from tensortrade.feed.api.float import Float


[docs] class ExponentialWeightedMovingAverage(Stream[float]): r"""A stream operator that computes an exponential weighted moving average on a given float stream. Parameters ---------- alpha : float The smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. adjust : bool Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). ignore_na : bool Ignore missing values when calculating weights. min_periods : int Minimum number of observations in window required to have a value (otherwise result is NA). References ---------- .. [1] https://github.com/pandas-dev/pandas/blob/d9fff2792bf16178d4e450fe7384244e50635733/pandas/_libs/window/aggregations.pyx#L1801 """ def __init__(self, alpha: float, adjust: bool, ignore_na: bool, min_periods: int) -> None: super().__init__() self.alpha = alpha self.adjust = adjust self.ignore_na = ignore_na self.min_periods = max(min_periods, 1) self.i = 0 self.n = 0 self.avg = None self.factor = 1 - alpha self.new_wt = 1 if self.adjust else self.alpha self.old_wt = 1
[docs] def forward(self) -> float: value = self.inputs[0].value if self.avg is None: is_observation = (value == value) self.n += int(is_observation) self.avg = value return self.avg if self.n >= self.min_periods else np.nan is_observation = (value == value) self.n += is_observation if self.avg == self.avg: if is_observation or not self.ignore_na: self.old_wt *= self.factor if is_observation: # avoid numerical errors on constant series if self.avg != value: num = self.old_wt * self.avg + self.new_wt * value den = self.old_wt + self.new_wt self.avg = num / den if self.adjust: self.old_wt += self.new_wt else: self.old_wt = 1 elif is_observation: self.avg = value return self.avg if self.n >= self.min_periods else np.nan
[docs] def has_next(self) -> bool: return True
[docs] def reset(self) -> None: self.i = 0 self.n = 0 self.avg = None self.old_wt = 1 super().reset()
[docs] class ExponentialWeightedMovingCovariance(Stream[float]): r"""A stream operator that computes an exponential weighted moving average on a given float stream. Parameters ---------- alpha : float The smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. adjust : bool Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). ignore_na : bool Ignore missing values when calculating weights. min_periods : int Minimum number of observations in window required to have a value (otherwise result is NA). bias : bool Use a standard estimation bias correction """ def __init__(self, alpha: float, adjust: bool, ignore_na: bool, min_periods: int, bias: bool) -> None: super().__init__() self.alpha = alpha self.adjust = adjust self.ignore_na = ignore_na self.min_periods = min_periods self.bias = bias self.i = 0 self.n = 0 self.minp = max(self.min_periods, 1) self.avg = None self.factor = 1 - alpha self.new_wt = 1 if self.adjust else self.alpha self.old_wt = 1 self.mean_x = None self.mean_y = None self.cov = 0 self.sum_wt = 1 self.sum_wt2 = 1 self.old_wt = 1
[docs] def forward(self) -> float: v1 = self.inputs[0].value v2 = self.inputs[1].value if self.mean_x is None and self.mean_y is None: self.mean_x = v1 self.mean_y = v2 is_observation = (self.mean_x == self.mean_x) and (self.mean_y == self.mean_y) self.n += int(is_observation) if not is_observation: self.mean_x = np.nan self.mean_y = np.nan return (0. if self.bias else np.nan) if self.n >= self.minp else np.nan is_observation = (v1 == v1) and (v2 == v2) self.n += is_observation if self.mean_x == self.mean_x: if is_observation or not self.ignore_na: self.sum_wt *= self.factor self.sum_wt2 *= (self.factor * self.factor) self.old_wt *= self.factor if is_observation: old_mean_x = self.mean_x old_mean_y = self.mean_y # avoid numerical errors on constant streams wt_sum = self.old_wt + self.new_wt if self.mean_x != v1: self.mean_x = ((self.old_wt * old_mean_x) + (self.new_wt * v1)) / wt_sum # avoid numerical errors on constant series if self.mean_y != v2: self.mean_y = ((self.old_wt * old_mean_y) + (self.new_wt * v2)) / wt_sum d1 = old_mean_x - self.mean_x d2 = old_mean_y - self.mean_y d3 = v1 - self.mean_x d4 = v2 - self.mean_y t1 = self.old_wt * (self.cov + d1 * d2) t2 = self.new_wt * d3 * d4 self.cov = (t1 + t2) / wt_sum self.sum_wt += self.new_wt self.sum_wt2 += self.new_wt * self.new_wt self.old_wt += self.new_wt if not self.adjust: self.sum_wt /= self.old_wt self.sum_wt2 /= self.old_wt * self.old_wt self.old_wt = 1 elif is_observation: self.mean_x = v1 self.mean_y = v2 if self.n >= self.minp: if not self.bias: numerator = self.sum_wt * self.sum_wt denominator = numerator - self.sum_wt2 if denominator > 0: output = ((numerator / denominator) * self.cov) else: output = np.nan else: output = self.cov else: output = np.nan return output
[docs] def has_next(self) -> bool: return True
[docs] def reset(self) -> None: self.avg = None self.new_wt = 1 if self.adjust else self.alpha self.old_wt = 1 self.mean_x = None self.mean_y = None self.cov = 0 self.sum_wt = 1 self.sum_wt2 = 1 self.old_wt = 1 super().reset()
[docs] class EWM(Stream[List[float]]): r"""Provide exponential weighted (EW) functions. Exactly one parameter: `com`, `span`, `halflife`, or `alpha` must be provided. Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`. span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`. halflife : float, str, timedelta, optional Specify decay in terms of half-life, :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for :math:`halflife > 0`. If ``times`` is specified, the time unit (str or timedelta) over which an observation decays to half its value. Only applicable to ``mean()`` and halflife value will not apply to the other functions. alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). adjust : bool, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). - When ``adjust=True`` (default), the EW function is calculated using weights :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series [:math:`x_0, x_1, ..., x_t`] would be: .. math:: y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} - When ``adjust=False``, the exponentially weighted function is calculated recursively: .. math:: \begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split} ignore_na : bool, default False Ignore missing values when calculating weights. - When ``ignore_na=False`` (default), weights are based on absolute positions. - When ``ignore_na=True``, weights are based on relative positions. See Also -------- .. [1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ewm.html References ---------- .. [1] https://github.com/pandas-dev/pandas/blob/d9fff2792bf16178d4e450fe7384244e50635733/pandas/core/window/ewm.py#L65 """ def __init__( self, com: float = None, span: float = None, halflife: float = None, alpha: float = None, min_periods: int = 0, adjust: bool = True, ignore_na: bool = False): super().__init__() self.com = com self.span = span self.halflife = halflife self.min_periods = min_periods self.adjust = adjust self.ignore_na = ignore_na if alpha: assert 0 < alpha <= 1 self.alpha = alpha elif com: assert com >= 0 self.alpha = 1 / (1 + com) elif span: assert span >= 1 self.alpha = 2 / (1 + span) elif halflife: assert halflife > 0 self.alpha = 1 - np.exp(np.log(0.5) / halflife) self.history = [] self.weights = []
[docs] def forward(self) -> "Tuple[List[float], List[float]]": value = self.inputs[0].value if self.ignore_na: if not np.isnan(value): self.history += [value] # Compute weights if not self.adjust and len(self.weights) > 0: self.weights[-1] *= self.alpha self.weights += [(1 - self.alpha) ** len(self.history)] else: self.history += [value] # Compute weights if not self.adjust and len(self.weights) > 0: self.weights[-1] *= self.alpha self.weights += [(1 - self.alpha)**len(self.history)] return self.history, self.weights
[docs] def has_next(self) -> bool: return True
[docs] def mean(self) -> "Stream[float]": """Computes the exponential weighted moving average. Returns ------- `Stream[float]` The exponential weighted moving average stream based on the underlying stream of values. """ return ExponentialWeightedMovingAverage( alpha=self.alpha, min_periods=self.min_periods, adjust=self.adjust, ignore_na=self.ignore_na )(self.inputs[0]).astype("float")
[docs] def var(self, bias=False) -> "Stream[float]": """Computes the exponential weighted moving variance. Returns ------- `Stream[float]` The exponential weighted moving variance stream based on the underlying stream of values. """ return ExponentialWeightedMovingCovariance( alpha=self.alpha, adjust=self.adjust, ignore_na=self.ignore_na, min_periods=self.min_periods, bias=bias )(self.inputs[0], self.inputs[0]).astype("float")
[docs] def std(self, bias=False) -> "Stream[float]": """Computes the exponential weighted moving standard deviation. Returns ------- `Stream[float]` The exponential weighted moving standard deviation stream based on the underlying stream of values. """ return self.var(bias).sqrt()
[docs] def reset(self) -> None: self.history = [] self.weights = [] super().reset()
[docs] @Float.register(["ewm"]) def ewm(s: "Stream[float]", com: float = None, span: float = None, halflife: float = None, alpha: float = None, min_periods: int = 0, adjust: bool = True, ignore_na: bool = False) -> "Stream[Tuple[List[float], List[float]]]": r"""Computes the weights and values in order to perform an exponential weighted moving operation. Parameters ---------- s : `Stream[float]` A float stream. com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`. span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`. halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for :math:`halflife > 0`. alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). adjust : bool, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). ignore_na : bool, default False Ignore missing values when calculating weights. Returns ------- `Stream[Tuple[List[float], List[float]]]` A stream of weights and values to be used for computation of exponential weighted moving operations. """ return EWM( com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na )(s)