Source code for tensortrade.pipeline.transformers.scaling

# Copyright 2024 The TensorTrade-NG Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
from __future__ import annotations

from pandas import DataFrame

from sklearn.preprocessing import StandardScaler, MinMaxScaler

from tensortrade.pipeline.transformers.abstract import AbstractTransformer


[docs] class ScalingTransformer(AbstractTransformer): """This class is used for scaling data. So that it can be used for machine learning. :param method: The used scaler: 'standard' for :class:`StandardScaler`, 'minmax' for :class:`MinMaxScaler` :type method: str """ def __init__(self, method: str = 'standard'): if method not in ['standard', 'minmax']: raise ValueError('Method should be either "standard" or "minmax".') self.method = method self.scaler = None
[docs] def transform(self, df: DataFrame) -> DataFrame: """Scales the data. :param df: The dataframe to be scaled. :type df: DataFrame :return: The scaled dataframe. :rtype: DataFrame """ if self.scaler is None: self._fit(df) # Scale data scaled_data = self.scaler.transform(df) return DataFrame(scaled_data, columns=df.columns, index=df.index)
def _fit(self, df: DataFrame): """Setups the scaler. :param df: The dataframe to be scaled. :type df: DataFrame """ if self.method == 'standard': self.scaler = StandardScaler() elif self.method == 'minmax': self.scaler = MinMaxScaler() self.scaler.fit(df)