Source code for tensortrade.pipeline.transformers.univariate_feature_selection

# Copyright 2024 The TensorTrade-NG Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
from __future__ import annotations

import typing

from sklearn.feature_selection import SelectKBest, f_classif, f_regression

from tensortrade.pipeline.transformers.abstract import AbstractTransformer

if typing.TYPE_CHECKING:
    from pandas import DataFrame


[docs] class UnivariateFeatureSelectionTransformer(AbstractTransformer): """Transformer that does univariate feature selection. It removes the features to num_features either by regression or classification. :params num_features: The number of features that should be returned. (Default = 20) :type num_features: int :param target_column: The name of the target column on which the mutual information score should be calculated. (Default = 'close') :type target_column: str :param target_shift: The number of periods to shift the target column to create the prediction target. (Default = 3) :type target_shift: int :param problem_type: The problem type to solve, either classification or regression. (Default = 'regression') :type problem_type: str """ def __init__(self, num_features: int = 20, *, target_column: str = 'close', target_shift: int = 3, problem_type: str = 'regression'): self.num_features = num_features self.target_column = target_column self.target_shift = target_shift self.problem_type = problem_type
[docs] def transform(self, df: DataFrame) -> DataFrame: """Reduces features by univariate feature selection. :param df: The input DataFrame containing the features and target column. :type df: DataFrame :return: A DataFrame reduced to the top features based on univariate feature selection. :rtype: DataFrame :raises ValueError: If the problem_type is not 'regression' or 'classification'. """ if self.problem_type == 'classification': # use classification selector = SelectKBest(score_func=f_classif, k=self.num_features) elif self.problem_type == 'regression': # use regression selector = SelectKBest(score_func=f_regression, k=self.num_features) else: raise ValueError('problem_type must be "classification" or "regression"') # Create a new DataFrame with shifted target column test_df = df.copy() test_df['target_predict'] = test_df[self.target_column].shift(-self.target_shift) test_df.dropna(inplace=True) # Create X and y for training X = test_df.drop(columns=['target_predict']) y = test_df['target_predict'] # fit and transform data selector.fit_transform(X, y) # take only selected features selected_features = df.columns[selector.get_support(indices=True)].tolist() if self.target_column not in selected_features: selected_features.insert(0, self.target_column) selected_features.pop() # reduce dataframe df_reduced = df[selected_features] return df_reduced